Add like
Add dislike
Add to saved papers

Aerobic exercise promotes the expression of ERCC1 to prolong lifespan: A new possible mechanism.

Medical Hypotheses 2019 January
Aerobic exercise can delay aging and extend lifespan, but its specific mechanism still remains unclear. One popular theory is that with age and the cell division times increasing, DNA damage will inevitably accumulate, leading to dysfunction and failure of various tissues and organs, which will eventually lead to aging. Thus, repairing damaged DNA is a key strategy to extend lifespan. Excision repair cross-complementary gene 1 (ERCC1) is a DNA repair enzyme that recognizes, excises and repairs damaged DNA. Defects or reduced activity of the enzyme can lead to DNA damage accumulation. This study provides that aerobic exercise can significantly extend rats' lifespan and increase the expression of ERCC1 in heart, brain, liver and kidney. Therefore, based on our experiments, we propose the following scientific hypothesis: aerobic exercise can up-regulate the expression of ERCC1 and then may reduce DNA damage accumulation to maintain genomic integrity and stability, thereby delaying aging and prolonging lifespan in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app