Add like
Add dislike
Add to saved papers

Combining biomarker trajectories to improve diagnostic accuracy in prospective cohort studies with verification bias.

Statistics in Medicine 2018 December 28
In this paper, we develop methods to combine multiple biomarker trajectories into a composite diagnostic marker using functional data analysis (FDA) to achieve better diagnostic accuracy in monitoring disease recurrence in the setting of a prospective cohort study. In such studies, the disease status is usually verified only for patients with a positive test result in any biomarker and is missing in patients with negative test results in all biomarkers. Thus, the test result will affect disease verification, which leads to verification bias if the analysis is restricted only to the verified cases. We treat verification bias as a missing data problem. Under both missing at random (MAR) and missing not at random (MNAR) assumptions, we derive the optimal classification rules using the Neyman-Pearson lemma based on the composite diagnostic marker. We estimate thresholds adjusted for verification bias to dichotomize patients as test positive or test negative, and we evaluate the diagnostic accuracy using the verification bias corrected area under the ROC curves (AUCs). We evaluate the performance and robustness of the FDA combination approach and assess the consistency of the approach through simulation studies. In addition, we perform a sensitivity analysis of the dependency between the verification process and disease status for the approach under the MNAR assumption. We apply the proposed method on data from the Religious Orders Study and from a non-small cell lung cancer trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app