Add like
Add dislike
Add to saved papers

Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci.

Carcinogenesis 2018 December 25
DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In the current study, we performed a large-scale case-control study with 20,871 lung cancer cases and 15,971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The eQTL (expression quantitative trait loci) analysis and pathway enrichment analysis were performed to identify the possible target genes and pathways. Additionally, we performed motif-based analysis to explore the lung cancer related motifs using sequence kernel association test (SKAT). Two novel variants, rs186332 in 20q13.3 (C>T, OR = 1.17, 95% CI: 1.10-1.24, P = 8.45×10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02×10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1 respectively. What's more, the expression of both MRGBP and SLC16A1 were aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71×10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS related genetic variants for lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app