Add like
Add dislike
Add to saved papers

Suppressing Self-Discharge with Polymeric Sulfur in Li-S Batteries.

Materials 2018 December 26
Lithium⁻sulfur (Li-S) batteries, due to their high theoretical capacity, intrinsic overcharge protection, and low cost, are considered as the most promising candidates for next-generation energy storage systems. To promote widespread use of Li-S batteries, various tactics have been reported to improve the columbic efficiency and to suppress the shuttle effect. Herein, we report a novel polymeric sulfur via heat radical polymerization, for the Li-S battery. The insolubles after CS₂ washing, and the changes in XRD (X-ray diffraction) results imply the formation of polymeric sulfur. Owing to the absence of cyclic S₈ molecular, the shuttle effect is depressed, and the polymeric sulfur cathodes exhibit lower self-discharge rates, higher sulfur utilization, better rates of performance, and enhanced cycling stabilities than the commercial sublimed sulfur. Thus, polymeric sulfur provides a new train of thought and tactics for restricting the formation of the dissolution of polysulfides, and self-discharge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app