Add like
Add dislike
Add to saved papers

Fractional Regularization to Improve Photoacoustic Tomographic Image Reconstruction.

Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include, Tikhonov, ℓ1-norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This work introduces a fractional framework, to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, ℓ1-norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, ℓ1-norm, and totalvariation by 54% in numerical simulations, experimental phantoms and in vivo rat data in terms of observed contrast/signal-to-noiseratio of the reconstructed images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app