Add like
Add dislike
Add to saved papers

Facile development, characterization and evaluation of novel Bicalutamide loaded pH sensitive mesoporous silica nanoparticles for enhanced prostate cancer therapy.

It is a challenge to deliver therapeutics exclusively to cancer cells, while sparing the normal cells. However, pH sensitive delivery systems have proved to be highly efficient in fulfilling this task due to their ability to provide on demand and selective release of drug at acidic tumor sites. As a proof of concept, here pH responsive drug delivery system based on mesoporous core shell nanoparticles (NPs) surrounded with poly acrylic acid (PAA) layers were prepared employing a facile synthesis strategy. Bicalutamide (BIC) was encased into surface functionalized MCM-41 nanoparticles via electrostatic interactions. The synthesized NPs were characterized by Nitrogen adsorption and desorption isotherms, SEM-EDS, TEM, LXRD and WXRD. In vitro release studies demonstrated that BIC-MSN-PAA NPs exhibited a higher release in the acidic media which varied inversely with increase in pH. Further, the results of cell cytotoxicity assay were evident that BICMSNs exhibited more potent killing of both PC-3 and LNCaP cells than free BIC. PAA-MSNs also exhibited an enhanced cellular uptake and prolonged circulation time in vivo. The results are suggestive of the fact that PAA functionalized MSNs can serve as an effective pH responsive template and hold a great potential ahead in controlled release and effective cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app