Add like
Add dislike
Add to saved papers

Comparison of the biomechanical effect of posterior condylar offset and kinematics between posterior cruciate-retaining and posterior-stabilized total knee arthroplasty.

Knee 2018 December 19
BACKGROUND: The effect of the changes in the femoral posterior condylar offset (PCO) on anterior-posterior (AP) translation and internal-external (IE) rotation in cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) remains unknown. The purpose of this study was to compare the kinematics in CR and PS TKA with respect to the difference in prosthetic design and PCO change through a computational simulation.

METHODS: We developed three-dimensional finite element models with the different PCOs of ±1, ±2 and ±3 mm in the posterior direction using CR and PS TKA. We performed the simulation with different PCOs under a deep knee bend condition and evaluated the kinematics for the AP and IE in CR and PS TKA.

RESULTS: The more tibiofemoral (TF) translation in the posterior direction was found as PCO translated in posterior direction for both CR and PS TKA compared to the neutral position. However, the change of the AP translation with respect to the PCO change in CR TKA was greater than PS TKA. The more TF external rotation was found as PCO translated in the anterior direction for both CR and PS TKA compared to the neutral position. However, unlike the TF translation, the TF rotation was not influenced by the PCO change in both CR and PS TKA.

CONCLUSION: The PCO magnitude was influenced by a postoperative change in the kinematics in CR TKA although a relatively smaller effect was observed in PS TKA. Hence, surgeons should be aware of the PCO change, especially for CR TKA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app