Add like
Add dislike
Add to saved papers

The R132H mutation in IDH1 promotes the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis and is correlated with a better prognosis in gliomas.

Mutations in the isocitrate dehydrogenase (IDH) 1 gene, especially the R132H mutation, have been reported to be associated with a better prognosis in glioma patients. However, the underlying molecular mechanisms are not yet well understood. Many factors may contribute to differences in the survival of IDH1 wild-type (WT) and IDH1 mutant glioma patients, in which immune components play a potentially important role. In this study, we analyzed The Cancer Genome Atlas (TCGA), and the Chinese Glioma Genome Atlas (CGGA) databases, as well as glioma patient-derived tumor samples. We found that there was a higher infiltration of natural killer (NK) cells in IDH1 mutant glioma patients, and this was correlated with a better prognosis. We also showed that IDH1-R132 tumor cells had higher expression levels of the chemokine CX3CL1. This arises as a result of the conversion of α-ketoglutarate to R (-)-2-hydroxyglutarate (2-HG) by the IDH1 mutant and the resultant phosphorylation of nuclear factor-B (p-NF-κB). Knockdown of CX3CL1 decreased the migration of NK cells. In addition, the high levels of expression of CX3CL1 were positively correlated with glioma patient survival in the TCGA and CGGA databases, and in the clinical samples. Overall, our data have identified a novel mechanism in which R132H mutation of the IDH1 gene serves as a tumor suppressor by promoting the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app