Add like
Add dislike
Add to saved papers

Recombinant growth differentiation factor 11 impairs fracture healing through inhibiting chondrocyte differentiation.

Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-β (TGF-β) superfamily, has been reported to have the capacity to reverse age-related pathologic changes and regulate organ regeneration after injury; however, the role of GDF11 in fracture healing and bone repair is still unclear. Here, we established a fracture model in 12-week-old male mice to observe two healing states: the cartilaginous callus and bony callus formation phases. Our results showed that recombinant GDF11 (rGDF11) injection inhibits cartilaginous callus maturation and hard callus formation, thereby impairing fracture healing in vivo. In vitro, rGDF11 administration inhibited chondrocyte differentiation and maturation by phosphorylating SMAD2/3 protein and inhibiting RUNX2 expression. Notably, inhibition of TGF-β activity by a SMAD-specific inhibitor attenuated GDF11 effects. Thus, our study demonstrates that, rather than acting as a rejuvenating agent, rGDF11 impairs fracture healing by inhibiting chondrocyte differentiation and maturation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app