Add like
Add dislike
Add to saved papers

Turbulent viscosity profile of drag reducing rod-like polymers.

Recent theories of drag reduction in wall turbulence assumed that the presence of the polymer leads to an effective viscosity, which increases linearly with the distance from the wall. Such a linear viscosity profile reduces the Reynolds stress (i.e., the momentum flux to the wall), which leads to drag reduction. For the usual flexible polymers employed in drag reduction, the effective viscosity is however a strongly non-linear effect that is difficult to quantify. We therefore investigate the turbulent drag reduction characteristics of a stiff rod-like polymer for which any effective viscosity changes are only due to the orientation of the polymers. The results show that close to the walls the polymers orient and the viscosity is low, whereas in the bulk the polymers are randomly oriented and the effective viscosity is high. This indeed leads to a reduction of the Reynolds stress and hence to a drag reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app