Add like
Add dislike
Add to saved papers

O 3 pollution in a future climate increases the competition between summer rape and wild mustard.

The initial aim of this study was to evaluate an effect of elevated CO2 concentration and air temperature (future climate) and O3 pollution on mono- and mixed-culture grown summer rape (Brassica napus L.) and wild mustard (Sinapis arvensis L.). The second task was to reveal the mechanisms of the shift in plants' competitiveness in response to single and combined environmental changes. Plants were grown in mono- and mixed-cultures under current climate (CC) (400 μmol mol-1 of CO2 , 21/14 °C day/night temperature) or future climate (FC) conditions (800 μmol mol-1 of CO2 , 25/18 °C day/night temperature) with and without O3 treatment (180 μg m-3 ). Competition had relatively little effect on growth of both species at current climate, independent of O3 treatment. In contrast, competitive effect of both plant species considerably increased under FC, and especially FC + O3 conditions, when growth of mixed-culture rape reduced up to 48% and that of wild mustard up to 80%. The mechanisms of elevated competitiveness of rape under the future climate consisted of better antioxidative protection, particularly elevated total antioxidative capacity and activities of peroxidase and ascorbate peroxidase. Whereas stronger oxidative damage, disproportionally high activities of H2 O2 scavenging enzymes and lower pool of soluble sugars in mixed-culture wild mustard reduced its competitiveness under FC + O3 conditions. In conclusion it must be pointed out, that regardless improved competitive abilities of rape under FC and FC + O3 conditions, competition with wild mustard reduced growth, indicating increased weed-induced yield losses in the future climate, especially with concomitant intensification of O3 pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app