Add like
Add dislike
Add to saved papers

Effect of endogenous multidrug resistance 1 and P-glycoprotein expression on anticancer drug resistance in colon cancer cell lines.

P-glycoprotein (P-gp, multidrug resistance 1 (MDR1)) overexpression confers multidrug resistance to cancer cells, and P-gp in cell lines transfected with MDR1 or selected with chemotherapeutics significantly affect the anticancer drug efficacy. Although human cancer cell line panels consisting of defined tumor cell lines expressing endogenous P-gp have been used to screen drugs in pharmaceutical industries, endogenous P-gp affecting in vitro anticancer drug efficacy is unclear. We assessed the impact of P-gp expression on anticancer drug efficacy by using five colon cancer cell lines expressing varying endogenous P-gp levels and by selecting from the Cancer Cell Line Encyclopedia (CCLE). mRNA expression of MDR1 was considered as a surrogate of the protein expression of its gene product, P-gp, in CL-11, C2BBe1, and RKO cells, whereas P-gp protein expression in plasma membranes or crude membrane fractions was lower than expected from mRNA expression in CW-2 and CL-40 cells. The EC50 of paclitaxel and vinorelbine decreased in the presence of a P-gp inhibitor in CW-2 and CL-11 cells that highly express P-gp. No significant alterations in EC50 were observed in CL-40, C2BBe1, and RKO cells, which show lower P-gp expression. Accordingly, apparent in vitro efficacy of anticancer drugs could be underestimated if endogenous P-gp expression is higher than CL-11 cells. The effect of P-gp needs to be carefully evaluated in cell lines that highly express P-gp, which account for 1.5% of cancer cell lines, including all cancer types, and 14.5% of colon cancer cell lines in CCLE, considering protein expression levels in plasma membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app