JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Cancer diagnosis using nanomaterials based electrochemical nanobiosensors.

Cancer is one of the most important causes of mortality in the world, which can be severely reduced by early detection to avoid future problems in the field of economics and mental health. Hence, electrochemical nanobiosensors as portable devices for rapid detection of  cancer biomarkers, have found an important place in clinical medicine for diagnosis, managements or cancer screening. Although, these biosensors have been receiving attention in the recent years, their principles are unchanged. By progress in nanotechnology, a great potential has been giving to nanobiosensors. Applications of a wide variety of nanomaterials in developing electrochemical biosensors, led to the production of potential nanobiosensors. Due to the high electrical conductivity, and increased surface area relative to the volume along with more repeatability, the application of NPs in electrochemical biosensors has been developed. Therefore, in this review, we discussed the impact of nanomaterials on the accuracy of biosensors in early cancer detection such as lung, prostate, breast, and other cancers. However, the modification of electrode performance by nanomaterials is relatively complicated, which causes limitation for some nanomaterials to be used inbiosensor applications. Indeed, the construction of electrodes based on nanomaterial requires a simple, reliable and inexpensive route to increase the sensitivity and reproducibility. Thus, the aim of this study can be defined as determining the detection limit of electrochemical nanobiosensors as well as introducing the challenges of fabricating and designing electrochemical nanobiosensors based on nanomaterials and their evaluations in the future medical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app