Add like
Add dislike
Add to saved papers

Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger.

Metabolic Engineering 2018 December 14
We engineered Aspergillus niger using a gene responsible for citric acid transport, which has a significant impact on citric acid secretion when overexpressed.. The transport gene was identified by a homology search using an itaconic acid transporter from Ustilago maydis as template. The encoding homologous protein CexA belongs to the major facilitator superfamily subclass DHA1 and members of this family work as drug-H+ antiporter. The disruption of this gene completely abolishes citric acid secretion, which indicates that this protein is the main citric acid transporter in A. niger. In the disruption strain, the metabolism is re-routed mainly to oxalic acid, which is a known by-product during citric acid production. The gene can be heterologously expressed in Saccharomyces cerevisiae, which leads to the secretion of citric acid during the growth on glucose. These results confirm the functionality of CexA as the main transporter for citric acid in A. niger. Overexpression of cexA leads to a significant increase in secreted citric acid. Thereby, striking differences between a strong-constitutive expression system using pmbfA as a promoter and an inducible expression system using ptet-on can be observed. The inducible system significantly outcompetes the constitutive expression system yielding up to 109g/L citric acid, which is 5 times higher compared to the parental wild-type strain and 3 times higher compared to the constitutive expression system. These results demonstrate the importance of the cellular transport system for an efficient production of metabolites. By overexpressing a single gene, it is possible to significantly improve the citric acid secretion capability of a moderately producing parental strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app