JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI.

NeuroImage 2019 March
The goal of this study was to develop a molecular biomarker for the detection of protein aggregation involved in Alzheimer's disease (AD) by exploiting the features of the water saturation transfer spectrum (Z-spectrum), the CEST signal of which is sensitive to the molecular configuration of proteins. A radial-sampling steady-state sequence based ultrashort echo time (UTE) readout was implemented to image the Z-spectrum in the mouse brain, especially the contributions from mobile proteins at the frequency offsets for the composite protein amide proton (+3.6 ppm) and aliphatic proton (-3.6 ppm) signals. Using a relatively weak radiofrequency (RF) saturation amplitude, contributions due to strong magnetization transfer contrast (MTC) from solid-like macromolecules and direct water saturation (DS) were minimized. For practical measure of the changes in the mobile protein configuration, we defined a saturation transfer difference (ΔST) by subtracting the Z-spectral signals at ±3.6 ppm from a control signal at 8 ppm. Phantom studies of glutamate solution, protein (egg white) and hair conditioner show the capability of the proposed scheme to minimize the contributions from amine protons, DS, and MTC, respectively. The ST signal at ±3.6 ppm of the cross-linked bovine serum albumin (BSA) solutions demonstrated that the ΔST signal can be used to monitor the aggregation process of the mobile proteins. High-resolution ΔST images of AD mouse brains at ±3.6 ppm of mouse brains showed significantly reduced ΔST (-3.6) signal compared to the age-matched wild-type (WT) mice. Thus, this signal has potential to serve as a molecular biomarker for monitoring protein aggregation in AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app