Add like
Add dislike
Add to saved papers

Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice.

Carbohydrate Polymers 2019 Februrary 16
The present study investigated the effects of a homogeneous Dendrobium huoshanense polysaccharide (GXG) on mucosal barrier function and microbiota composition in different intestinal regions of mice. Results exhibited, besides changing the intestinal physiological status, orally administrated GXG could improve the intestinal physical barrier function by modulating mucosal structures and up-regulating the expression of tight junction proteins, reinforce the intestinal biochemical barrier function by elevating the expression and secretion of mucin-2, β-defensins and sIgA, and regulate the intestinal immunological barrier function by stimulating the production of cytokines and the functional development of immune cells. Simultaneously, GXG could differentially impact the composition and metabolism of microbiota along intestinal tract. In addition, the immune response in spleen and peripheral blood were effectively regulated by GXG. These results indicated that GXG might be used as functional agent to improve host health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app