Add like
Add dislike
Add to saved papers

Influence of the T to S mutation at the STMK motif on antibiotic resistance of penicillin binding protein 1A: A comprehensive computational study.

The emergence of antibiotic resistance has attracted the attention of scientists and scientific circles over the decades. β-Lactam antibiotics resistance is a worldwide therapeutic challenge in bacterial infections, mediated through several mechanisms of which mutations in Penicillin Binding Proteins (PBPs) are an important issue, making critical therapeutic problems in the human population. Accordingly, investigating the dynamic structures of mutant variants could result in a profound understanding of such a specific resistance. Therefore, this work investigated structural properties sampled by all-atom molecular dynamics (MD) simulations, umbrella sampling, and binding free energy calculations for both a wild-type and a cefotaxime-resistant T to S mutant of PBP1A. The T to S mutation significantly reduces the binding affinity of cefotaxime (a frequently clinically-administrated β-lactam antibiotic) as the PBP1A inhibitor. In the conventional MD simulations presented here, more fluctuations of the mutant's active site cleft margins were detected. The cleft of the mutant protein also opened remarkably more than the wild-type's cleft and displayed more flexibility. Thus, our findings have shown that flexibility of cleft margins of the active site in the mutant PBP1A immediately results in the catalytic cleft opening. In addition, binding free energy calculation suggests that reducing hydrophobic contacts and increasing the polar contribution in the binding energy may play an important role in cefotaxime resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app