Add like
Add dislike
Add to saved papers

Non-covalent hitchhiking on endogenous carriers as a protraction mechanism for antiviral macromolecular prodrugs.

Albumin is a highly successful tool of drug delivery providing drastically extended body and blood residence time for the associated cargo, but it only traffics single drug copies at a time. In turn, macromolecular prodrugs (MP) are advantaged in carrying a high drug payload but offering only a modest extension of residence time to the conjugated drugs. In this work, we engineer MP to contain terminal groups that bind to albumin via non-covalent association and reveal that this facile measure affords a significant protraction for the associated polymers. This methodology is applied to MP of acyclovir, a successful drug against herpes simplex virus infection but with poor pharmacokinetics. Resulting albumin-affine MP were efficacious agents against herpes simplex virus type 2 (HSV-2) both in vitro and in vivo. In the latter case, sub-cutaneous administration of MP resulted in local (vaginal) antiviral effects and a systemic protection. Presented benefits of non-covalent association with albumin are readily transferrable to a wide variety of MP in development for drug delivery as anticancer, anti-inflammatory, and anti-viral measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app