Add like
Add dislike
Add to saved papers

Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways.

Experimental Neurology 2018 December 13
Dendritic and synaptic plasticity in the penumbra are important processes and are considered to be therapeutic targets of ischemic stroke. Treadmill exercise is known to be a beneficial treatment following stroke. However, its effects and potential mechanism in promoting dendritic and synaptic plasticity remain unknown. We have previously demonstrated that the caveolin-1/VEGF signaling pathway plays a positive role in angiogenesis and neurogenesis. Here, we further investigated the effects of treadmill exercise on promoting dendritic and synaptic plasticity in the penumbra and whether they involve the caveolin-1/VEGF signaling pathway. A middle cerebral artery occlusion (MCAO) animal model was established, and rats were randomly divided into eleven groups. At 2 days after MCAO, rats were subjected to treadmill exercise for 7 or 28 days. Daidzein (a specific inhibitor of caveolin-1, 0.4 mg/kg) was used to confirm the effect of caveolin-1/VEGF signaling on exercise-mediated dendritic and synaptic plasticity. Neurobehavioral performance, tissue morphology and infarct volumes were detected by Modified Neurology Severity Score (mNSS), Hematoxylin-eosin (HE), and Nissl staining, while neural plasticity and its molecular mechanism were examined by Golgi-Cox staining, transmission electron microscopy, western blot analysis and immunofluorescence. We found that treadmill exercise promoted dendritic plasticity in the penumbra, consistent with the significant increase in caveolin-1 and VEGF expression; improved neurological recovery; and reduced infarct volume. In contrast to the positive effects of the treadmill, a caveolin-1 inhibitor abrogated the dendritic and synaptic plasticity. Furthermore, we observed that treadmill exercise-induced improved dendritic and synaptic plasticity were significantly inhibited by the caveolin-1 inhibitor, consistent with the lower expression of caveolin-1 and VEGF, as well as the worse neurobehavioral state. The findings indicate that treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app