Add like
Add dislike
Add to saved papers

Dose prescription with spatial uncertainty for peripheral lung SBRT.

Current clinical practice is to prescribe to 95% of the planning target volume (PTV) in 4D stereotactic body radiotherapy (SBRT) for lung. Frequently the PTV margin has a very low physical density so that the internal target volume (ITV) receives an unnecessarily high dose. This study investigates the alternative of prescribing to the ITV while including the effects of positional uncertainties. Five patients were retrospectively studied with volumetric modulated arc therapy treatment plans. Five plans were produced for each patient: a static plan prescribed to PTV D95% , three probabilistic plans prescribed to ITV D95% and a static plan re-prescribed to ITV D95% after inverse planning. For the three probabilistic plans, the scatter kernel in the dose calculation was convolved with a spatial uncertainty distribution consisting of either a uniform distribution extending ±5 mm in the three orthogonal directions, a distribution consisting of delta functions at ±5 mm, or a Gaussian distribution with standard deviation 5 mm. Median ITV D50% is 23% higher than the prescribed dose for static planning and only 10% higher than the prescribed dose for prescription to the ITV. The choice of uncertainty distribution has less than 2% effect on the median ITV dose. Re-prescribing a static plan and evaluating with a probabilistic dose calculation results in a median ITV D95% which is 1.5% higher than when planning probabilistically. This study shows that a robust probabilistic approach to planning SBRT lung treatments results in the ITV receiving a dose closer to the intended prescription. The exact form of the uncertainty distribution is not found to be critical.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app