Add like
Add dislike
Add to saved papers

The Ising model in swollen vs. compact polymers: Mean-field approach and computer simulations.

We study the properties of the classical Ising model with nearest-neighbor interaction for spins located at the monomers of long polymer chains in 2 and 3 dimensions. We compare results for two ensembles of polymers with very different single chain properties: 1) swollen, self-avoiding linear polymer chains in good solvent conditions and 2) compact, space-filling randomly branching polymers in melt. By employing a mean-field approach and Monte Carlo computer simulations, we show that swollen polymers cannot sustain an ordered phase. On the contrary, compact polymers may indeed produce an observable phase transition. Finally, we briefly consider the statistical properties of the ordered phase by comparing polymer chains within the same universality class but characterized by very different shapes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app