Add like
Add dislike
Add to saved papers

A note on evolution of pressure and flow within an evaporating capillary bridge.

Experiments with evaporation of capillary bridges between two glass spheres show that the bridge gorge radius decreases much faster than the contact radius, distorting the original constant mean curvature bridge shape. In addition, the Laplace pressure calculated from local principal curvatures exhibits high gradients along the bridge moving external surface, most commonly with a high suction near the triple phase contact and positive pressure near the gorge. The high suction results from a negative external curvature at contact. Numerical dynamic simulations with a moving evaporating interface do not currently allow for reproducing a negative external curvature at contact. A series of static simulations are shown based on a representation of an experimentally observed interface, which does include the negative curvature at contact. The resulting Laplace pressure distribution is close to the experimental ones. Most importantly, the pressure gradients induce a consistent flow of liquid from the central area of the bridge, axially toward the solid contact, and then along the solid interface toward the contact area. The flow is believed to contribute to contact pinning. Pinning is viewed as one of the precursors of capillary bridge rupture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app