Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Candida albicans.

Trends in Microbiology 2019 Februrary
Pathogens often face zinc restriction due to the action of nutritional immunity - host processes which restrict microbial access to key micronutrients such as zinc and iron. Candida albicans scavenges environmental zinc via two pathways. The plasma membrane transporter Zrt2 is essential for zinc uptake and growth in acidic environments. Neutralisation to pH 7 severely decreases the solubility of ionic Zn2+ ; this increase in pH triggers expression and activity of a second zinc scavenging system, the zincophore. This fungus-specific system consists of a secreted zinc-binding protein, Pra1, which captures zinc and returns to the cell via a syntenically expressed receptor, Zrt1. If present in excess, zinc is detoxified via a Zrc1-dependent mechanism. In C. albicans Zrc1 plays an important role in the generation of zincosomes. C. albicans faces both low and high zinc bottlenecks in vivo as Zrt2 and Zrc1 are required for kidney and liver colonisation, respectively, in a murine infection model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app