Add like
Add dislike
Add to saved papers

Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model.

To associate paclitaxel (PTX) with doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Despite the high response rates for this combination, it presents a cardiotoxic synergism, attributed to pharmacokinetic interactions between PTX and both DXR and its metabolite, doxorubicinol. One of the main strategies to minimize the cardiotoxicity of the combination is to extend the interval of time between DXR and PTX administration. However, it has been previously suggested that their co-administration leads to better efficacy compared to their sequential administration. In the present study, we investigated different molar ratio combinations of PTX:DXR (10:1; 1:1, and 1:10) against the 4T1 murine breast cancer cell line and concluded that there is no benefit of enhancing PTX concentration above that of DXR on the combination. Therefore, we obtained a long-circulating and fusogenic liposomal formulation co-encapsulating PTX and DXR (LCFL-PTX/DXR) at a molar ratio of 1:10, respectively, which maintained the in vitro biological activity of the combination. This formulation was investigated for its antitumor activity and toxicity in Balb/c mice bearing 4T1 breast tumor, and compared to treatments with free PTX, free DXR, and the mixture of free PTX:DXR at 1:10 molar ratio. The higher tumor inhibition ratios were observed for the treatments with free and co-encapsulated PTX:DXR in liposomes (66.87 and 66.52%, respectively, P>0.05) as compared to the control. The great advantage of the treatment with LCFL-PTX/DXR was its improved cardiac toxicity profile. While degeneration was observed in the hearts of all animals treated with the free PTX:DXR combination, no signs of cardiac toxicity were observed for animals treated with the LCFL-PTX/DXR. Thus, LCFL-PTX/DXR enables the co-administration of PTX and DXR, and might be considered valuable for breast cancer management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app