Add like
Add dislike
Add to saved papers

Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization.

An experiment was conducted with seedlings of Citrus macrophylla Wester to study the effects of P nutrition on plants inoculated with a mixture (Rhizophagus irregularis and Funneliformis mosseae) of arbuscular mycorrhizal (AM) fungi. The treatments consisted of factorial combinations of two factors: mycorrhization (-AM: non-inoculated plants, and +AM: inoculated plants) and P nutrition (0, 0.1, 1, and 5 mM P). After the P treatments had been applied for 165 days, the AM fungi showed an important effect on plant growth and P uptake, but this effect depended on the P fertilization. In the absence of P fertilization, inoculation with the AM fungi had little impact on P nutrition and plant growth. However, when 0.1 or 1 mM P was supplied, inoculation had a clear beneficial effect on plant growth, since P nutrition was significantly improved, the maximum growth of the +AM plants occurring at 1 mM P. The supply of 5 mM P did not increase plant growth with regard to 1 mM P due to a lack of improvement in leaf P nutrition and photosynthesis. The higher demand of the AM fungi in the roots of the +AM plants for sucrose reduced the concentration of sucrose in the leaves of plants receiving 5 mM P, and of fructose and glucose in the roots of plants supplied with 0.1 or 1 mM P, relative to the -AM plants. The inoculated plants grown with 5 mM P had a decreased starch concentration in their roots, in order to supply the high sugar demand of the AM fungi. The C drain towards the AM fungi in the +AM plants may have been compensated by a higher photosynthetic rate and improved mineral nutrition. Inoculation improved plant P nutrition in the 0.1 and 1 mM P treatments but had a lesser effect at 5 mM P. The tissue levels of certain nutrients, such as Mg, improved with inoculation regardless of the P treatment, but those of other nutrients - such as Zn or Fe - increased more in the +AM plants with lower P supply. So, in general, the +AM C. macrophylla plants receiving the highest P supply did not show improved mineral nutrition relative to the -AM plants. Overall, the results indicate that when the availability of P to C. macrophylla plants is high, the lower benefits received by the plants from the C-for-P trade can convert a mutualistic relationship between the host plant and AM fungi into a parasitic one since colonization can persist even when the availability of P in the soil is high.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app