Add like
Add dislike
Add to saved papers

Comparing functional dynamic normalization methods to maximal voluntary isometric contractions for lower limb EMG from walking, cycling and running.

There is no consensus on the most appropriate method for normalizing an individual's electromyography (EMG) signals from walking, cycling and running in the same data collection. The aim of this study was to compare how the magnitude and repeatability of normalization values differ from three normalization methods and to compare their scaling effect in three moderate intensity activities. Three rounds of maximal voluntary isometric contractions (MVICs), sprint cycling and sprint running were performed to obtain normalization values for each method. EMG from five moderate intensity trials of walking, cycling and running were performed and normalized using each normalization value. Normalization values, coefficients of variation, and peak normalized EMG from the three moderate intensity activities were compared across normalization methods. Sprint running resulted in greater normalization values for 6/9 muscles. MVICs produced the lowest variance in 6/9 muscles. Comparing peak normalized signals of interest across normalization methods, there were significant differences in 6/9, 7/9 and 8/9 muscles for walking, cycling and running, respectively. When investigating a combination of walking, cycling and/or running EMG data, sprint running could be used for normalization, due to its simplicity and its ability to produce a larger normalization value, despite lower repeatability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app