Add like
Add dislike
Add to saved papers

A structural and functional perspective on the enzymes of Mycobacterium tuberculosis involved in the L-rhamnose biosynthesis pathway.

Tuberculosis is one of the leading causes of death from bacterial infections. The multi-drugresistant strain has warranted the development of new drug molecules which can inhibit the growth of Mycobacterium tuberculosis. Most of the known drugs inhibit the enzymes in the cell wall biosynthesis. One of such pathway is L-rhamnose, which involves four druggableenzymes RmlA, B, C and D. The 3D structure analyses of these protein models (RmlA, B and D) and crystal structure (RmlC) has been carried out. Multiple sequence alignments of homologs from distant species of 32 taxa and analyses of available structures were performed in order to study the conservation of sequence and structural motifs, and catalytically important residues. Based on these results and reported mechanism in other organisms, we have predicted putative catalytic mechanism of M.tb enzymes involved in the L-rhamnose biosynthesis pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app