Add like
Add dislike
Add to saved papers

Wnt signaling reprograms metabolism in dental pulp stem cells.

Human dental pulp stem cells (DPSCs) can differentiate to a wide range of different cell lineages, and share some gene expression and functional similarities with pluripotent stem cells. The stemness of DPSCs can also be pharmacologically enhanced by the activation of canonical Wnt signaling. Here, we examined the metabolic profile of DPSCs during reprogramming linked to Wnt activation, by a short (48 hr) exposure to either the GSK3-β inhibitor BIO (6-bromoindirubin-3´-oxine) or human recombinant protein WNT-3A. Both treatments largely increased glucose consumption, and induced a gene overexpression of pyruvate and mitochondrial acetyl-coA producing enzymes, thus activating mitochondrial tricarboxylic acid cycle (TCA) metabolism in DPSCs. This ultimately led to an accumulation of reducing power and a mitochondrial hyperpolarization in DPSCs. Interestingly, Nile Red staining showed that lipid fuel reserves were being stored in Wnt-activated DPSCs. We associate this metabolic reprogramming with an energy-priming state allowing DPSCs to better respond to subsequent high demands of energy and biosynthesis metabolites for cellular growth. These results show that enhancement of the stemness of DPSCs by Wnt activation comes along with a profound metabolic remodeling, which is distinctly characterized by a crucial participation of mitochondrial metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app