Add like
Add dislike
Add to saved papers

MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis, and response to cytotoxic therapy.

AIMS: Aberrant expression of microRNAs (miRNAs) is frequent in various cancers including gliomas. We aimed to characterize the role of miR-16-5p as a candidate tumour suppressor miRNA in gliomas.

METHODS: Real-time PCR-based approaches were used for miRNA and mRNA expression profiling of glioma and non-neoplastic brain tissues as well as glioma cell lines. Protein levels were determined by Western blotting. In vitro analyses were performed following overexpression of miR-16-5p, trichostatin A treatment, and siRNA-mediated knock-down of HDAC3 in glioma cells. Effects of miR-16-5p on glioma cell viability, apoptosis and response to irradiation and temozolomide were assessed.

RESULTS: Expression of miR-16-5p was reduced relative to control brain tissue in isocitrate dehydrogenase (IDH)-mutant astrocytomas of World Health Organization (WHO) grades II, III, and IV, and a subset of IDH-wildtype glioblastomas WHO grade IV. MiR-16-5p expression was lower in IDH-mutant than in IDH-wildtype gliomas, and down-regulated in IDH-wildtype glioma lines. MiR-16-5p overexpression reduced expression of important cell cycle and apoptosis regulators in glioma cells, including CDK6, CDC25A, CCND3, CCNE1, WEE1, CHEK1, BCL2, and MCL1. In line, CDK6, WEE1, CHEK1, BCL2, and MCL1 transcript levels were increased in WHO grade III or IV gliomas. Trichostatin A treatment and HDAC3 knockdown in glioma cells induced miR-16-5p up-regulation and reduced expression of its targets. Moreover, miR-16-5p overexpression inhibited proliferation and induced apoptosis in various glioma cell lines and increased sensitivity of A172 glioma cells to irradiation and temozolomide.

CONCLUSION: Reduced expression of miR-16-5p contributes to glioma cell proliferation, survival, and resistance to cytotoxic therapy. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app