Add like
Add dislike
Add to saved papers

Enhanced stability and optical absorption in the perovskite-based compounds MA$_{1-x}$Cs$_x$PbI$_{3-y}$Br$_y$.

Organometal halide perovskites have been outstanding from enormous amount of functional materials thanks to their highly cost-effective processability and prominent light harvesting capacity. Unfortunately, poor long-term stability seriously hinders their further development. The recent experimental observations suggest that Cesium is a promising candidate to enhance the stability of MAPbI$_3$. To explore the inherent mechanism, a first-principles investigation based on density functional theory, including hybrid functional, has been performed to analyze the electronic and optical properties of perovskite series MA$_{0.75}$Cs$_{0.25}$PbI$_{3-y}$Br$_y$. The results indicate that perovskite compound MA$_{0.75}$Cs$_{0.25}$PbI$_2$Br is significantly superior to the other doped series in terms of optical absorption within the visible-light range. In the meanwhile, both Bader charge analysis and charge density distribution show that the compound of MA$_{0.75}$Cs$_{0.25}$PbI$_2$Br is the most stable among all the doped perovskite series. Moreover, it is clearly manifested that the impact of cesium is mainly embodied in the enhancement of the stability rather than in the improvement of optical absorption. Our study sheds a new light on screening new-type light harvesting materials, and provides theoretical insight into the rationale design of highly efficient and stable photovoltaic devices based on these functional materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app