Add like
Add dislike
Add to saved papers

Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season.

Physical Review Letters 2018 November 31
We present results from an analysis of all data taken by the bicep2/Keck CMB polarization experiments up to and including the 2015 observing season. This includes the first Keck Array observations at 220 GHz and additional observations at 95 and 150 GHz. The Q and U maps reach depths of 5.2, 2.9, and 26  μK_{CMB} arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈400 square degrees. The 220 GHz maps achieve a signal to noise on polarized dust emission approximately equal to that of Planck at 353 GHz. We take auto and cross spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz. We evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and we impose priors on some of these using external information from Planck and WMAP derived from larger regions of sky. The model is shown to be an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r_{0.05}<0.07 at 95% confidence, which tightens to r_{0.05}<0.06 in conjunction with Planck temperature measurements and other data. The lensing signal is detected at 8.8σ significance. Running a maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.020. These are the strongest constraints to date on primordial gravitational waves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app