Add like
Add dislike
Add to saved papers

Inferring Gene Regulatory Networks from Multiple Datasets.

Gaussian process dynamical systems (GPDS) represent Bayesian nonparametric approaches to inference of nonlinear dynamical systems, and provide a principled framework for the learning of biological networks from multiple perturbed time series measurements of gene or protein expression. Such approaches are able to capture the full richness of complex ODE models, and can be scaled for inference in moderately large systems containing hundreds of genes. Related hierarchical approaches allow for inference from multiple datasets in which the underlying generative networks are assumed to have been rewired, either by context-dependent changes in network structure, evolutionary processes, or synthetic manipulation. These approaches can also be used to leverage experimentally determined network structures from one species into another where the network structure is unknown. Collectively, these methods provide a comprehensive and flexible platform for inference from a diverse range of data, with applications in systems and synthetic biology, as well as spatiotemporal modelling of embryo development. In this chapter we provide an overview of GPDS approaches and highlight their applications in the biological sciences, with accompanying tutorials available as a Jupyter notebook from https://github.com/cap76/GPDS .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app