Add like
Add dislike
Add to saved papers

Inhibitory Control and Information Processing in ADHD: Comparing the Dual Task and Performance Adjustment Hypotheses.

Inhibition is a key neurocognitive domain in ADHD that is commonly assessed with the stop-signal task. The stop-signal involves both "go" and "stop" trials; previous research indicates that response times are reliably slower to "go" trials during tasks with vs. without intermittent "stop" trials. However, it is unclear whether this pattern reflects deliberate slowing to maximize inhibitory success (performance adjustment hypothesis) and/or disrupted bottom-up information processing due to increased cognitive demands (dual-task hypothesis). Given the centrality of "go" responding for estimating children's inhibitory speed, finding that children with ADHD slow differently -or for different reasons- has the potential to inform cognitive and self-regulatory theories of ADHD. The current study used a carefully-controlled experimental design to assess the mechanisms underlying stop signal-related slowing in ADHD. Children ages 8-13 with (n = 81) and without ADHD (n = 63) completed the stop-signal task and a control task that differed only in the presence/absence of "stop" trials. Using drift-diffusion modeling, Bayesian repeated-measures ANOVAs revealed a pattern consistent with the performance adjustment hypothesis, such that children adopted more cautious response strategies (BF10  = 6221.78; d = 0.38) but did not show changes in processing speed (BF01  = 3.08; d = 0.12) or encoding/motor speed (BF01  = 5.73; d = 0.07) when inhibition demands were introduced. Importantly, the ADHD/Non-ADHD groups showed equivalent effects of intermittent "stop" trials (BF01  = 4.30-5.56). These findings suggest intact self-regulation/performance monitoring in the context of adapting to increased inhibitory demands in ADHD, which has important implications for the continued isolation of potential mechanisms associated with ADHD symptoms and impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app