Add like
Add dislike
Add to saved papers

Neuroprotective role of dexmedetomidine pretreatment in cerebral ischemia injury via ADRA2A-mediated phosphorylation of ERK1/2 in adult rats.

Neuroprotective effects of dexmedetomidine (Dex) have been reported in various models of brain injury. However, to our knowledge, the neuroprotective mechanism of Dex pretreatment in rats remains unknown. The aim of the present study was to detect the expression of the α2A adrenergic receptor (ADRA2A) in focal ischemic brain tissues and to investigate the protective role and corresponding mechanism of Dex pretreatment in cerebral ischemia in rats. A hypoxia/reoxygenation (H/R) cell model in primary cultured astrocytes and a focal cerebral ischemia/reperfusion (I/R) model in adult rats were used. The expression of ADRA2A and extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the primary cultured astrocytes and rat brain ischemic tissues was detected in the different conditions prior to and following Dex pretreatment using western blotting. The H/R model of primary cultured astrocytes and the focal cerebral I/R model in adult rats were successfully constructed. Under the normal oxygen conditions, 500 ng/ml Dex pretreatment increased the expression of ADRA2A and phosphorylated (p)-ERK1/2 in the astrocytes compared with in the control group. Hypoxic culture for 6 h and then reoxygenation for 24 h decreased the levels of p-ERK1/2 in the astrocytes compared with those in control group. This decrease was prevented by Dex pretreatment for 3 h. The hypoxic culture and then reoxygenation increased the expression of ADRA2A. Similarly, compared with those prior to Dex treatment, the levels of ADRA2A and p-ERK1/2 in the brain ischemic tissues following Dex treatment were increased. The levels of ADRA2A and p-ERK1/2 were 0.72±0.23 and 0.66±0.25 following Dex treatment, compared with 0.76±0.22 and 0.31±0.18, respectively, prior to Dex treatment. The effect of Dex pretreatment increasing p-ERK1/2 expression was attenuated by AG1478 pretreatment. In summary, Dex appeared to promote phosphorylation of ERK1/2 in astrocytes under H/R. As a specific agonist of ADRA2A, Dex may activate phosphorylation of ERK1/2 via ADRA2A in astrocytes. Thus, the neuroprotective role of Dex pretreatment against cerebral ischemic injury may function via ADRA2A-mediated phosphorylation of ERK1/2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app