Add like
Add dislike
Add to saved papers

Optimal Design of Energy Systems Using Constrained Grey-Box Multi-Objective Optimization.

The (global) optimization of energy systems, commonly characterized by high-fidelity and large-scale complex models, poses a formidable challenge partially due to the high noise and/or computational expense associated with the calculation of derivatives. This complexity is further amplified in the presence of multiple conflicting objectives, for which the goal is to generate trade-off compromise solutions, commonly known as Pareto-optimal solutions. We have previously introduced the p-ARGONAUT system, parallel AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems, which is designed to optimize general constrained single objective grey-box problems by postulating accurate and tractable surrogate formulations for all unknown equations in a computationally efficient manner. In this work, we extend p-ARGONAUT towards multi-objective optimization problems and test the performance of the framework, both in terms of accuracy and consistency, under many equality constraints. Computational results are reported for a number of benchmark multi-objective problems and a case study of an energy market design problem for a commercial building, while the performance of the framework is compared with other derivative-free optimization solvers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app