Add like
Add dislike
Add to saved papers

Cholesterol increases protein levels of the E3 ligase MARCH6, and thereby stimulates protein degradation.

The E3 ligase membrane-associated ring-CH-type finger 6 (MARCH6) is a polytopic enzyme bound to the membranes of the endoplasmic reticulum. It controls levels of several known protein substrates, including a key enzyme in cholesterol synthesis, squalene monooxygenase. However, beyond its own autodegradation, little is known about how MARCH6 itself is regulated. Using CRISPR/Cas9 gene-editing, MARCH6 overexpression, and immunoblotting, we found here that cholesterol stabilizes MARCH6 protein endogenously and in HEK293 cells that stably express MARCH6. Conversely, MARCH6-deficient HEK293 and HeLa cells lost their ability to degrade squalene monooxygenase in a cholesterol-dependent manner. The ability of cholesterol to boost MARCH6 did not seem to involve a putative sterol-sensing domain in this E3 ligase, but was abolished when either membrane extraction by valosin-containing protein (VCP/p97) or proteasomal degradation were inhibited. Furthermore, cholesterol-mediated stabilization was absent in two MARCH6 mutants that are unable to degrade themselves, indicating that cholesterol stabilizes MARCH6 protein by preventing its autodegradation. Experiments with chemical chaperones suggested that this likely occurs through a conformational change in MARCH6 upon cholesterol addition. Moreover, cholesterol reduced the levels of at least three known MARCH6 substrates, indicating that cholesterol-mediated MARCH6 stabilization increases its activity. Our findings highlight an important new role for cholesterol in controlling levels of proteins, extending the known repertoire of cholesterol homeostasis players.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app