Add like
Add dislike
Add to saved papers

Electrical Permittivity and Conductivity of a Graphene Nanoplatelet Contact in the Microwave Range.

Materials 2018 December 12
This paper investigates the electrical properties in the microwave range of a contact made by graphene nanoplatelets. The final goal is that of estimating the range of values for the equivalent electrical complex permittivity of a contact obtained by integrating low-cost graphene in the form of nanoplatelets (GNPs) into a high-frequency electrical circuit. To this end, a microstrip-like circuit is designed and realized, where the graphene nanoplatelets are self-assembled into a gap between two copper electrodes. An experimental characterization is carried out, both to study the structural properties of the nanomaterials and of the realized devices, and to measure the electromagnetic scattering parameters in the microwave range by means of a microstrip technique. A full-wave electromagnetic model is also derived and used to investigate the relationship between the measured quantities and the physical and geometrical parameters. The combined use of the experimental and simulation results allows for retrieving the values of the equivalent complex permittivity. The equivalent electrical conductivity values are found to be well below the values expected for isolated graphene nanoplatelets. The real part of the electrical relative permittivity attains values comparable to those obtained with GNP nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app