Add like
Add dislike
Add to saved papers

Effect of Dielectric Distributed Bragg Reflector on Electrical and Optical Properties of GaN-Based Flip-Chip Light-Emitting Diodes.

Micromachines 2018 December 9
We demonstrated two types of GaN-based flip-chip light-emitting diodes (FCLEDs) with distributed Bragg reflector (DBR) and without DBR to investigate the effect of dielectric TiO₂/SiO₂ DBR on optical and electrical characteristics of FCLEDs. The reflector consisting of two single TiO₂/SiO₂ DBR stacks optimized for different central wavelengths demonstrates a broader reflectance bandwidth and a less dependence of reflectance on the incident angle of light. As a result, the light output power (LOP) of FCLED with DBR shows 25.3% higher than that of FCLED without DBR at 150 mA. However, due to the better heat dissipation of FCLED without DBR, it was found that the light output saturation current shifted from 268 A/cm² for FCLED with DBR to 296 A/cm² for FCLED without DBR. We found that the use of via-hole-based n -type contacts can spread injection current uniformly over the entire active emitting region. Our study paves the way for application of DBR and via-hole-based n -type contact in high-efficiency FCLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app