Add like
Add dislike
Add to saved papers

Preparation and Characterization of Zeolite/TiO₂ Cement-Based Composites with Excellent Photocatalytic Performance.

Materials 2018 December 8
A zeolite/TiO₂ composite (ZTC) was applied to prepare a high-quality photocatalytic cement-based material (PCM). The acetone degradation experiment and micro measurements including XRD(X-Ray Diffractometer), SEM-EDS(Scanning Electron Microscope-Energy Dispersive Spectrometer), BET(BET Specific Surface Area Tester), FTIR(Fourier Transform Infrared Spectrometer) were conducted to characterize the photocatalytic efficiency and physicochemical properties of PCM, respectively. Results show that TiO₂ particles disperse on the surface of a PCM homogeneously and provide abundant active sites for photocatalytic reactions. Compared to a normal photocatalytic cement-based material (NPCM), the TiO₂ content of a PCM is lower and its photocatalytic efficiency is higher. The ZTC frees TiO₂ particles from the impacts of cement hydration products and increases the adsorption volume of acetone. The photocatalytic performance of the PCM was stable after repeated tests. Using the ZTC as a photocatalyst has a prominent effect on the photocatalytic performance of the PCM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app