Add like
Add dislike
Add to saved papers

A Bayesian approach for analysis of ordered categorical responses subject to misclassification.

Ordinal categorical responses are frequently collected in survey studies, human medicine, and animal and plant improvement programs, just to mention a few. Errors in this type of data are neither rare nor easy to detect. These errors tend to bias the inference, reduce the statistical power and ultimately the efficiency of the decision-making process. Contrarily to the binary situation where misclassification occurs between two response classes, noise in ordinal categorical data is more complex due to the increased number of categories, diversity and asymmetry of errors. Although several approaches have been presented for dealing with misclassification in binary data, only limited practical methods have been proposed to analyze noisy categorical responses. A latent variable model implemented within a Bayesian framework was proposed to analyze ordinal categorical data subject to misclassification using simulated and real datasets. The simulated scenario consisted of a discrete response with three categories and a symmetric error rate of 5% between any two classes. The real data consisted of calving ease records of beef cows. Using real and simulated data, ignoring misclassification resulted in substantial bias in the estimation of genetic parameters and reduction of the accuracy of predicted breeding values. Using our proposed approach, a significant reduction in bias and increase in accuracy ranging from 11% to 17% was observed. Furthermore, most of the misclassified observations (in the simulated data) were identified with a substantially higher probability. Similar results were observed for a scenario with asymmetric misclassification. While the extension to traits with more categories between adjacent classes is straightforward, it could be computationally costly. For traits with high heritability, the performance of the methodology would be expected to improve.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app