Add like
Add dislike
Add to saved papers

Facile In Situ Synthesis of Multiple-Heteroatom-Doped Carbons Derived from Polyimide Precursors for Flexible All-Solid-State Supercapacitors.

Efficient strategies to prepare carbon materials with improved electrochemical performance for supercapacitor have been in great demand. Herein, we develop multiple-heteroatom-doped carbons (from single- to triple-doped) by pyrolysis of polyimide precursors using a facile in situ approach. This approach can be used to tune heteroatom compositions by controlling the desired polyimide monomer functional groups as well as introducing external doping sources into the polyimide precursor solutions. Various types of multiple-heteroatom-doped carbons such as N; N,S-; N,F-; N,S,B-; and N,F,B-doped carbon are synthesized. Among these synthesized multiple-heteroatom-doped carbons, the specific capacitance of N,F,B triple-doped carbon exhibits 350.3 F g-1 at 1 A g-1 in a three-electrode system. Furthermore, a flexible all-solid-state supercapacitor device using the N,F,B-doped carbon with PVA-1M H2SO4 gel electrolyte demonstrates a volumetric energy density of 0.58 mWh cm-3. It is expected that this synthesis strategy for multiple-heteroatom-doped carbons can be used for practical supercapacitor applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app