Add like
Add dislike
Add to saved papers

How methyl-sugar interactions determine DNA structure and flexibility.

Nucleic Acids Research 2018 December 13
The sequence dependent structure and flexibility of the DNA double helix is of key importance for gene expression and DNA packing and it can be modulated by DNA modifications. The presence of a C5'-methyl group in thymine or the frequent C5'-methylated-cytosine affects the DNA fine structure, however, the underlying mechanism and steric origins have remained largely unexplained. Employing Molecular Dynamics free energy simulations that allow switching on or off interactions with the methyl groups in several DNA sequences, we systematically identified the physical origin of the coupling between methyl groups and DNA backbone fine structure. Whereas methyl-solvent and methyl-nucleobase interactions were found to be of minor importance, the methyl group interaction with the 5' neighboring sugar was identified as main cause for influencing the population of backbone substates. The sterical methyl sugar clash prevents the formation of unconventional stabilizing hydrogen bonds between nucleobase and backbone. The technique was also used to study the contribution of methyl groups to DNA flexibility and served to explain why the presence of methyl sugar clashes in thymine and methyl-cytosine can result in an overall local increase of DNA flexibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app