Add like
Add dislike
Add to saved papers

LTP suppression by protein synthesis inhibitors is NO-dependent.

Neuropharmacology 2018 December 10
For several decades, the ability of protein synthesis inhibitors (PSI) to suppress the long-term potentiation (LTP) of hippocampal responses is known. It is considered that mechanisms of such impairment are related to a cessation of translation and a delayed depletion of the protein pool required for maintenance of synaptic plasticity. The present study demonstrates that cycloheximide or anisomycin applications reduce amplitudes of the field excitatory postsynaptic potentials as well as the presynaptically mediated form of plasticity, the paired-pulse facilitation after LTP induction in neurons of the CA1 area of hippocampus. We showed that nitric oxide signaling could be one of the pathways that cause the LTP decrease induced by cycloheximide or anisomycin. Inhibitor of the NO synthase, L-NNA or the NO scavenger, PTIO, rescued the late-phase LTP and restored the paired-pulse facilitation up to the control levels. For the first time we have directly measured the nitric oxide production induced by application of the translation blockers in hippocampal neurons using the NO-sensitive dye DAF-FM. Inhibitory analysis demonstrated that changes during protein synthesis blockade downstream the NO signaling cascade are cGMP-independent and apparently are implemented through degradation of target proteins. Prolonged application of the NO donor SNAP impaired the LTP maintenance in the same manner as PSI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app