Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy.

ACS Nano 2018 December 27
Catalytic deoxyribozyme has great potential for gene regulation, but the poor efficiency of the cleavage of mRNA and the lack of versatile DNAzyme vehicles remain big challenges for potent gene therapy. By the rational designing of a diverse vehicle of polydopamine-Mn2+ nanoparticles (MnPDA), we demonstrate that MnPDA has integrated functions as an effective DNAzyme delivery vector, a self-generation source of DNAzyme cofactor for catalytic mRNA cleavage, and an inherent therapeutic photothermal agent as well as contrast agent for photoacoustic and magnetic resonance imaging. Specifically, the DNAzyme-MnPDA nanosystem protects catalytic deoxyribozyme from degradation and enhances cellular uptake efficiency. In the presence of intracellular glutathione, the nanoparticles are able to in situ generate free Mn2+ as a cofactor of DNAzyme to effectively trigger the catalytic cleavage of mRNA for gene silencing. In addition, the nanosystem shows high photothermal conversion efficiency and excellent stability against photothermal processing and degradation in complex environments. Unlike previous DNAzyme delivery vehicles, this vehicle exhibits diverse functionalities for potent gene regulation, allowing multimodal imaging-guided synergetic gene regulation and photothermal therapy both in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app