Add like
Add dislike
Add to saved papers

Ganodermanontriol inhibits expression of special AT rich sequence binding protein 1 gene in human hepatocellular carcinoma.

Context: The metastasis of liver cancer is a major cause of clinical treatment failure, restrain, and control the cancer metastasis is the major strategy of the treatment and prevention of the disease. Special AT-rich sequence-binding protein 1 (SATB1) gene was overexpressed in many malignant tumors and considered as a potential target of anticancer drug. This study investigated the mechanism how ganodermanontriol effect the expression of SATB1 and thus inhibits the growth and metastasis in hepatocellular carcinoma (HCC).

Aims: This study explored mainly on the mechanism how ganodermanontriol affects the expression of SATB1 and inhibits proliferation of tumor on human hepatoma cell line HepG2.

Settings and Design: The cancer cells were treated with ganodermanontriol. The status of the cells was detected by different methods. The mechanism was checked by various methods.

Materials and Methods: In HepG2 cancer cells treated with various concentrations of ganodermanontriol, the cell proliferation of was detected by MTT assay, cell apoptosis was analyzed by flow cytometry; the mRNA of SATB1, Bcl-2, Bax were detected by reverse transcription-polymerase chain reaction (RT-PCR) and the protein level of SATB1, Bcl-2, Bax, and caspase 3 were analyzed by Western blot.

Statistical Analysis Used: Data are presented as the mean ± standard deviation. The data were analyzed using SPSS 18.0 software (SPSS, Inc., Chicago, IL, USA) and GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA, USA). A one-way analysis of variance test was used to compare the differences among groups.

Results: This study showed that ganodermanontriol could significantly reduce the expression level of SATB1.

Conclusion: Therefore, downregulate the cascade effect caused by the expression level of Bcl-2 in HCC HepG2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app