Add like
Add dislike
Add to saved papers

3-N-Butylphthalide mitigates high glucose-induced injury to Schwann cells: association with nitrosation and apoptosis.

A high glucose state readily causes peripheral axon atrophy, demyelination, loss of nerve fiber function, and delayed regeneration. However, few studies have examined whether nitration is also critical for diabetic peripheral neuropathy. Therefore, this study investigated the effects of high glucose on proliferation, apoptosis, and 3-nitrotyrosine levels of Schwann cells treated with butylphthalide. In addition, we explored potential protective mechanisms of butylphthalide on peripheral nerves. Schwann cells were cultured in vitro with high glucose then stimulated with the peroxynitrite anion inhibitors uric acid and 3-n-butylphthalide for 48 hours. Cell Counting Kit-8 and flow cytometry were used to investigate the effects of uric acid and 3-n-butylphthalide on proliferation and apoptosis of Schwann cells exposed to a high glucose environment. Effects of uric acid and 3-n-butylphthalide on levels of 3-nitrotyrosine in Schwann cells were detected by enzyme-linked immunosorbent assay. The results indicated that Schwann cells cultured in high glucose showed decreased proliferation, but increased apoptosis and intracellular 3-nitrotyrosine levels. However, intervention with uric acid or 3-n-butylphthalide could increase proliferation of Schwann cells cultured in high glucose, and inhibited apoptosis and intracellular 3-nitrotyrosine levels. According to our data, 3-n-butylphthalide may inhibit cell nitrification and apoptosis, and promote cell proliferation, thereby reducing damage to Schwann cells caused by high glucose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app