JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Periostin induces kidney fibrosis after acute kidney injury via the p38 MAPK pathway.

Periostin plays a crucial role in fibrosis, and acute kidney injury results in a high risk of progression to chronic kidney disease. Therefore, we hypothesized that periostin was involved in the progression of acute kidney injury to kidney fibrosis. Unilateral ischemia-reperfusion injury (UIRI) was induced in 7- to 8-wk-old male wild-type and periostin-null mice, and the animals were observed for 6 wk. In vitro, human kidney-2 cells and primary-cultured human tubular epithelial cells were incubated under hypoxic conditions (5% O2 , 5% CO2 , and 90% N2 ) for 5 days. The cells were also cultured with recombinant periostin (rPeriostin) and a p38 mitogen-activated protein kinase (MAPK) inhibitor in a hypoxic incubator. At 6 wk after UIRI, interstitial fibrosis/tubular atrophy was significantly alleviated in periostin-null mice compared with wild-type controls. In addition, periostin-null mice had attenuated expression of fibrosis/apoptosis markers and phosphorylated-p38 MAPK compared with wild-type controls. In vitro, hypoxic injury increased the expression of fibrosis markers, periostin, and phosphorylated-p38 MAPK, which was comparable to or substantially greater than their expression levels following treatment with recombinant transforming growth factor-β1 under normoxic conditions. Furthermore, rPeriostin treatment under hypoxic conditions enhanced fibrosis/apoptosis markers and phosphorylated-p38 MAPK. In contrast, p38 MAPK inhibition ameliorated hypoxia-induced fibrosis, and the addition of the p38 MAPK inhibitor to rPeriostin significantly ameliorated the changes induced by rPeriostin. In conclusion, periostin promotes kidney fibrosis via the p38 MAPK pathway following acute kidney injury triggered by a hypoxic or ischemic insult. Periostin ablation may protect against chronic kidney disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app