Add like
Add dislike
Add to saved papers

miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro.

The irrefutable change in the expression of brain-enriched microRNAs (miRNAs) following ischemic stroke has promoted the development of radical miRNA-based therapeutics encompassing neuroprotection and neuronal restoration. Our previous report on the systems-level prediction of miR-9 in post-stroke-induced neurogenesis served as a premise to experimentally uncover the functional role of miR-9 in post-ischemic neuronal survival and regeneration. The oxygen-glucose deprivation (OGD) in SH-SY5Y cells significantly reduced miR-9 expression, while miR-9 mimic transfection enhanced post-ischemic neuronal cell viability. The next major objective involved the execution of a drug repositioning strategy to augment miR-9 expression via structure-based screening of Food and Drug Administration (FDA)-approved drugs that bind to Histone Deacetylase 4 (HDAC4), a known miR-9 target. Glucosamine emerged as the top hit and its binding potential to HDAC4 was verified by Molecular Dynamics (MD) Simulation, Drug Affinity Responsive Target Stability (DARTS) assay, and MALDI-TOF MS. It was intriguing that the glucosamine treatment 1-h post-OGD was associated with the increased miR-9 level as well as enhanced neuronal viability. miR-9 mimic or post-OGD glucosamine treatment significantly increased the cellular proliferation (BrdU assay), while the neurite outgrowth assay displayed elongated neurites. The enhanced BCL2 and VEGF parallel with the reduced NFκB1, TNF-α, IL-1β, and iNOS mRNA levels in miR-9 mimic or glucosamine-treated cells further substantiated their post-ischemic neuroprotective and regenerative efficacy. Hence, this study unleashes a potential therapeutic approach that integrates neuronal survival and regeneration via small-molecule-based regulation of miR-9 favoring long-term recovery against ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app