Add like
Add dislike
Add to saved papers

Dietary DHA/EPA Ratio Changes Fatty Acid Composition and Attenuates Diet-Induced Accumulation of Lipid in the Liver of ApoE -/- Mice.

Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE-/- mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app