Add like
Add dislike
Add to saved papers

Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase.

Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At a steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-nitroso-coenzyme A (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Since SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127A versus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app